logo
products
PRODUCTS DETAILS
Home > Products >
Atlas Air Compressor Temperature Sensor 1089057578 High Quality

Atlas Air Compressor Temperature Sensor 1089057578 High Quality

MOQ: 1
Price: USD23
Delivery Period: 15-20 work days
Payment Method: T/T
Supply Capacity: 100-1000
Detail Information
Place of Origin
China
Brand Name
Atlas Parts
Model Number
1089057578
Highlight:

Atlas Parts 1089057578

,

Atlas Parts Temperature Sensor

,

1089057578 Temperature Sensor

Product Description

Temperature Sensor Product Overview

Definition & Core Function

A temperature sensor is an electronic component that quantitatively measures thermal energy and converts it into a readable signal (voltage, resistance, or digital output) for monitoring and control applications. These devices serve as critical components in systems requiring precise thermal management across industrial, automotive, medical, and consumer sectors.


Technical Classification & Operating Principles

Sensor Type Matrix

Technology Principle Output Signal Key Equation
Thermocouple (T/C) Seebeck Effect Voltage (mV) V = αΔT (α = Seebeck coefficient)
RTD Resistive Change Resistance (Ω) Rₜ = R₀[1 + α(T-T₀)]
Thermistor Non-linear Resistance Resistance (Ω) β-parameter equation
Semiconductor IC Bandgap Voltage Digital/Analog ΔVBE = (kT/q)ln(N)
Infrared (IR) Planck's Radiation Law Voltage (μV) εσT⁴ (Stefan-Boltzmann)

Performance Specifications

Comparative Technical Parameters

Parameter Thermocouple RTD (Pt100) Class A Thermistor IC Sensor
Range (°C) -200 to +2300 -200 to +850 -50 to +150 -55 to +150
Accuracy ±1.5°C ±0.1°C ±0.05°C ±0.5°C
Response Time (τ63%) 0.1-10s 1-50s 0.5-5s 5-60s
Long-term Stability ±0.2°C/yr ±0.05°C/yr ±0.02°C/yr ±0.1°C/yr
Linearity Error Non-linear 0.1% FS 0.2% FS 0.5% FS

Advanced Engineering Features

Material Science Applications

Environment Optimal Sensor Protection Method
High Temp (>1000°C) Type B T/C (PtRh30-PtRh6) Ceramic/molybdenum sheath
Corrosive Media Hastelloy-sheathed RTD PFA encapsulation
Vibration Zones MEMS accelerometer-compensated Strain relief fittings
EMI Fields Fiber-optic sensor Dielectric isolation

Industrial Implementation Guide

Selection Algorithm

  1. Error Budget Analysis

    • Calculate total system error from:

      • Sensor inaccuracy

      • Signal conditioning error

      • Thermal gradient effects

  2. Dynamic Response Requirements

    • Compute required time constant:
      τ = (mc/hA) for step changes

  3. Thermal Interface Optimization

    • Thermal paste selection:

      • Silicone-based (0.5 W/mK)

      • Metal-filled (5 W/mK)


Smart Sensor Integration

Industry 4.0 Capabilities

Feature Technical Implementation Protocol
Predictive Diagnostics Embedded degradation algorithms IEEE 1451.4
Wireless Monitoring Energy-harvesting LoRaWAN nodes IEC 62591
Digital Twin Sync Real-time thermal modeling OPC UA

Certification & Compliance

  • Automotive: AEC-Q200 Grade 0 (+150°C)

  • Medical: ISO 80601-2-56 (clinical thermometers)

  • Aerospace: DO-160G (EMI/RFI immunity)

  • Food Safety: EHEDG-compliant designs


Maintenance Protocol

  1. Calibration Traceability

    • NIST-traceable procedures per ASTM E2847

    • 3-point minimum verification

  2. Failure Mode Analysis

    • T/C: Open-circuit detection

    • RTD: 3-wire vs 4-wire compensation

  3. Lifecycle Testing

    • Accelerated aging:
      1000 thermal cycles (IEC 60751)


Custom Solutions

  • High-Vibration: Laser-welded strain relief

  • Ultra-Fast Response: Thin-film RTDs (τ < 100ms)

  • Multi-Point Arrays: Distributed fiber-optic sensing

For mission-critical applications, request our Thermal Performance Simulation Report including:

  • Transient thermal analysis

  • Signal-to-noise ratio modeling

  • Failure mode effects analysis (FMEA)


Technical Note: All metal-sheathed sensors require proper grounding to prevent thermoelectric noise in low-level signals. For Class I Div 1 areas, specify intrinsically safe barriers with [Entity Parameters] Vmax, Imax, Ci, Li.








products
PRODUCTS DETAILS
Atlas Air Compressor Temperature Sensor 1089057578 High Quality
MOQ: 1
Price: USD23
Delivery Period: 15-20 work days
Payment Method: T/T
Supply Capacity: 100-1000
Detail Information
Place of Origin
China
Brand Name
Atlas Parts
Model Number
1089057578
Minimum Order Quantity:
1
Price:
USD23
Delivery Time:
15-20 work days
Payment Terms:
T/T
Supply Ability:
100-1000
Highlight

Atlas Parts 1089057578

,

Atlas Parts Temperature Sensor

,

1089057578 Temperature Sensor

Product Description

Temperature Sensor Product Overview

Definition & Core Function

A temperature sensor is an electronic component that quantitatively measures thermal energy and converts it into a readable signal (voltage, resistance, or digital output) for monitoring and control applications. These devices serve as critical components in systems requiring precise thermal management across industrial, automotive, medical, and consumer sectors.


Technical Classification & Operating Principles

Sensor Type Matrix

Technology Principle Output Signal Key Equation
Thermocouple (T/C) Seebeck Effect Voltage (mV) V = αΔT (α = Seebeck coefficient)
RTD Resistive Change Resistance (Ω) Rₜ = R₀[1 + α(T-T₀)]
Thermistor Non-linear Resistance Resistance (Ω) β-parameter equation
Semiconductor IC Bandgap Voltage Digital/Analog ΔVBE = (kT/q)ln(N)
Infrared (IR) Planck's Radiation Law Voltage (μV) εσT⁴ (Stefan-Boltzmann)

Performance Specifications

Comparative Technical Parameters

Parameter Thermocouple RTD (Pt100) Class A Thermistor IC Sensor
Range (°C) -200 to +2300 -200 to +850 -50 to +150 -55 to +150
Accuracy ±1.5°C ±0.1°C ±0.05°C ±0.5°C
Response Time (τ63%) 0.1-10s 1-50s 0.5-5s 5-60s
Long-term Stability ±0.2°C/yr ±0.05°C/yr ±0.02°C/yr ±0.1°C/yr
Linearity Error Non-linear 0.1% FS 0.2% FS 0.5% FS

Advanced Engineering Features

Material Science Applications

Environment Optimal Sensor Protection Method
High Temp (>1000°C) Type B T/C (PtRh30-PtRh6) Ceramic/molybdenum sheath
Corrosive Media Hastelloy-sheathed RTD PFA encapsulation
Vibration Zones MEMS accelerometer-compensated Strain relief fittings
EMI Fields Fiber-optic sensor Dielectric isolation

Industrial Implementation Guide

Selection Algorithm

  1. Error Budget Analysis

    • Calculate total system error from:

      • Sensor inaccuracy

      • Signal conditioning error

      • Thermal gradient effects

  2. Dynamic Response Requirements

    • Compute required time constant:
      τ = (mc/hA) for step changes

  3. Thermal Interface Optimization

    • Thermal paste selection:

      • Silicone-based (0.5 W/mK)

      • Metal-filled (5 W/mK)


Smart Sensor Integration

Industry 4.0 Capabilities

Feature Technical Implementation Protocol
Predictive Diagnostics Embedded degradation algorithms IEEE 1451.4
Wireless Monitoring Energy-harvesting LoRaWAN nodes IEC 62591
Digital Twin Sync Real-time thermal modeling OPC UA

Certification & Compliance

  • Automotive: AEC-Q200 Grade 0 (+150°C)

  • Medical: ISO 80601-2-56 (clinical thermometers)

  • Aerospace: DO-160G (EMI/RFI immunity)

  • Food Safety: EHEDG-compliant designs


Maintenance Protocol

  1. Calibration Traceability

    • NIST-traceable procedures per ASTM E2847

    • 3-point minimum verification

  2. Failure Mode Analysis

    • T/C: Open-circuit detection

    • RTD: 3-wire vs 4-wire compensation

  3. Lifecycle Testing

    • Accelerated aging:
      1000 thermal cycles (IEC 60751)


Custom Solutions

  • High-Vibration: Laser-welded strain relief

  • Ultra-Fast Response: Thin-film RTDs (τ < 100ms)

  • Multi-Point Arrays: Distributed fiber-optic sensing

For mission-critical applications, request our Thermal Performance Simulation Report including:

  • Transient thermal analysis

  • Signal-to-noise ratio modeling

  • Failure mode effects analysis (FMEA)


Technical Note: All metal-sheathed sensors require proper grounding to prevent thermoelectric noise in low-level signals. For Class I Div 1 areas, specify intrinsically safe barriers with [Entity Parameters] Vmax, Imax, Ci, Li.